Named one of the Best Books of 2008 by Kirkus Reviews
"Make[s] the scientific process as suspenseful as a good whodunit."
--Oregonian"[A] smooth, well-researched book that reads like a fast-paced novel."
--News & Observer (Raleigh)
"This scientific adventure spans two world wars and every cell in your body."
--Discover magazine
"Haber and Bosch are fascinating if troubled personalities, brought by Hager compellingly to life."
--Washington Post Book World
"[A] gripping account of the partnership between two Nobel Prize winners whose efforts to save the world had tragic consequences we're still sifting through today."
--Plenty magazine
"You will certainly find [Hager's] story of [Fritz Haber and Carl Bosch] and their discover to be enlightening and entertaining....I know of few other books that provide the general reader with a better portrait of chemistry as the most useful of sciences, and I intend to recommend it to scientists and non-scientists alike."
--The Journal of Chemical Education
"Many discoveries and inventions are touted as history-changing. But as Thomas Hager admirably proves in his new book, The Alchemy of Air, Fritz Haber and Carl Bosch not only changed history, they made much of recent human history possible. As Hager solemnly notes in his introduction, 'the discovery described in this book is keeping alive nearly half the people on earth.' ....As with almost all technological advancement, however, there is a downside. The synthetic Haber-Bosch nitrogen, which now makes up about half the nitrogen in every human body, also fueled the weapons of the world wars and created a nitrogen-rich environment that is having a huge impact on Earth, from lush vegetative growth to dead zones in the oceans. Thanks to two visionary and troubled scientists, we are all now, in Hager's words, 'creatures of the air, ' dependent for our very existence on a process whose consequences we don't completely understand."
--BookPage
A fast-paced account of the early-20th-century quest to develop synthetic fertilizer. Today hundreds of factories convert atmospheric nitrogen to ammonia in order to manufacture the artificial fertilizers that make modern-day agricultural yields possible. They are based on the technological advance known as the Haber-Bosch process, developed prior to World War I by the German chemists and Nobel laureates Fritz Haber (1868-1934) and Carl Bosch (1874-1940). Hager (The Demon Under the Microscope: From Battlefield Hospitals to Nazi Labs, One Doctor's Heroic Search for the World's First Miracle Drug, 2006, etc.) offers a superb narrative of these brilliant men and their scientific discovery. Around the turn of the century, the world faced a shortage of the fixed nitrogen needed to provide food for a growing population. Hager sets the stage by describing the world's reliance in the 19th century on nitrates from Peru and Chile that could be used as natural fertilizer or to make gunpowder, and finds plenty of human drama in the battles to control the lucrative international trade. Determined to help end Germany's dependence on South American nitrates, Bosch and Haber worked at the German chemical company BASF to find a way to convert nitrogen into ammonia. Bosch developed the process, and Haber designed bigger industrial plants. By 1944, the Haber-Bosch factory at Leuna--a primary target for U.S. bombers--occupied three square miles and employed 35,000 workers. The author not only illuminates the scientists' complex work, but also digs into their personal lives. Bosch, a melancholic with a huge villa in Heidelberg, asked Hitler to spare Jewish scientists for the sake of German chemistry and physics (the Fuhrer replied: "Then we'll just have to work 100 years without physics and chemistry!"). Haber, a Jew, developed the chlorine gas used in World War I, sought a way to extract gold from the oceans to pay off German war reparations and conducted research that led to the development of the Zyklon B gas used in Nazi death camps. Science writing of the first order.
--Kirkus Reviews, starred review
Excerpt. © Reprinted by permission. All rights reserved.
Chapter 1
The prophecy was made in the fall of 1898, in a music hall in Bristol, England, by a thin man with a graying, neatly trimmed beard and a mustache waxed to alarmingly long, needlelike points. His audience, the cream of British science, thousands of formally dressed men and bejeweled women, were seated in a low-rent venue, what Americans would have called a vaudeville palace--a last-minute substitute for an academic auditorium that had burned down--but they dutifully filed in and filled every seat from the orchestra pit to the highest balcony. The hall was uncomfortably hot, especially in the upper seats. Exquisitely gowned women began opening their fans. Evening-coated men began murmuring to their neighbors that it looked as if it were going to be a long evening.
The speaker was Sir William Crookes, 1898's incoming president of the British Academy of Sciences. Impeccably dressed, erect and resolute, he looked every inch the triumphant, newly knighted physicist he was: inventor of the Crookes Tube (a predecessor of the cathode ray tubes used later for televisions and computers), recent discoverer of an interesting new addition to the periodic table that he had named thallium, fearless explorer of science, even out to its furthest edges--Crookes was an active researcher in the area of seances and the question of life after death.
Inaugural speeches were often deadly dull. The incoming presidents of scientific associations almost always droned long lists of achievements made during the past year, with nods to numerous individual researchers, sprinkled with homilies about the importance of science for the British Empire. Crookes, however, had decided to shake things up. He adjusted his oval glasses, glanced at his notes, looked up, and got right to the point. "England and all civilized nations," he said, "stand in deadly peril."
The fans in the balcony stopped fluttering. Crookes's voice was clear but he spoke softly. The hall went silent, the audience straining to hear as the speaker continued. If nothing was done soon, he explained, great numbers of people, especially in the world's most advanced nations, were soon going to begin starving to death. This was a conclusion that he was forced to accept, he said, after considering two simple facts: "As mouths multiply," he said, "food sources dwindle." The number of mouths had been increasing for some time thanks to advances in sanitation and medical care, from the installation of improved water systems to the introduction of antiseptics. These were great triumphs for humanity. But they carried with them a threat. While population increased, land was limited; there were only so many farmable acres on earth. When every one of those acres was under the plow and farmed as well as it could be, the population would keep going up, the farmed and refarmed soil would slowly lose its fertility, and mass starvation would, of necessity, ensue. His research led him to estimate, he said, that humans would begin dying of hunger in large numbers some time around the 1930s.
There was only one way to stop it, he said. And then he told them what it was.
Every agricultural society in every age has had its own methods, rites, and prayers for ensuring rich crops. Homer sang of farmers gathering heaps of mule and cow dung. The Romans worshipped a god of manure, Stercutius. Rome made an early science of agriculture, ranking various animal excrements (including human), composts, blood, and ashes according to their fertilizing power. Pigeon dung, they found, was the best overall for growing crops, and cattle dung was clearly better than horse manure. Fresh human urine was best for young plants, aged urine for fruit trees.
Both the Romans and the ancient Chinese also understood that there was another key to a healthy farm: crop rotation. No one knew why or how it worked, but never planting the same crop twice consecutively in the same land, instead alternating it with certain crops like peas and clovers, managed to replenish the fertility of fields. Every few years the Chinese made sure to rotate in a crop of soybeans; chickpeas were the crop of choice in the Middle East, lentils in India, and mung beans in Southeast Asia; and Europeans used peas or beans or clover. "Oats, peas, beans, and barley grow" was more than a children's rhyme. It was a timetable for successful farming.
Healthy farms had compost pits, plenty of domestic animals for manure, and a system of crop rotation. But it was never enough. It took scores of tons of manure per acre to grow great crops. Manure gathering and handling grew into a small industry, employing thousands of workers who scoured the countryside for cow and pig excrement, cleared city streets of horse manure, and then sold it by the stinking ton to farmers and gardeners. There was never enough. A heavy application of manure helped for a season or two, but then the fertility of the soil declined and more was needed. In the most intensively cultivated land in Europe--the Marais district of Paris--owners of small city-garden plots applied dung at rates as high as hundreds of tons per acre, and every year they had to repeat the process. By 1700 or so, hungry Europeans were experimenting with other soil additives in an attempt to increase their yields, trying sea salt, powdered limestone, burned bones, rotting fish, anything that might keep their soils producing.
But the world's best farmers were not in Europe. In the wet, warm farmlands of southeastern China, farmers a millennium ago were already expert in using every possible kind of fertilizer, hoarding their human waste and adding it to the output from their domestic animals, composting vegetable scraps and leaves, and tossing in seed cakes to enrich their fields. It was all applied to the most ingenious farm system imaginable: a complex of dike-and-pond fields in which they grew not only rice, mulberries, sugarcane, and fruits but also carp. The fish waste helped fertilize the crops. The dung of the water buffaloes used to work the fields helped fertilize the crops. So did the waste of the ducks that swam in the ponds. They grew a native water fern in the paddies that acted like a crop of soybeans, adding fertility to the soil. The tropical climate allowed multiple harvests per year. This was the highest-yield traditional agricultural system ever devised. Using it, the Chinese could feed as many as ten people with the output from each acre of farmland, a yield of food five to ten times higher than the European average of the 1800s. "The Chinese are the most admirable gardeners," an appreciative European scientist wrote in 1840. "The agriculture of their country is the most perfect in the world."
It was not enough. During the nineteenth century, millions of people left the farm and flocked to cities during the Industrial Revolution. As the cities grew and the population of the earth rose faster and faster, it became clear that feeding ten people per acre, the pinnacle of traditional agriculture, was nowhere near good enough. The crisis Crookes predicted would have happened fifty years before his speech, but for the opening of vast new farming territories, from the Great Plains of the United States and the steppes of Russia to the vast landscapes of Australia. When their land played out, farmers simply moved west or south or east to the next expanse of virgin soil.
Now, however, Crookes warned, the earth held no more Great Plains. The globe had been explored, mapped, and the best agricultural areas settled and plowed. From this point on, farmers would have to make do with the land they had, refarming the same acres year after year. This brought Crookes to the critical issue: When land was farmed repeatedly, no matter how carefully crops were rotated, no matter how scrupulously every bit of animal dung was applied, the soil slowly lost its original fertility.
His analysis focused on wheat, the staple of Europeans and North Americans, the staff of life for Caucasians. Any drop in wheat production threatened, as he put it, "racial starvation." His conclusion, based on what he called stubborn facts, seemed incontrovertible: In a few decades, the populations of the great wheat-eating peoples--including the Caucasians of the British Empire, northern Europe, and the United States--would outstrip their grain of choice, and thousands of people, then hundreds of thousands, then millions, would begin to die.
The best traditional farming techniques in the world were not enough to avert the coming crisis. England itself was using the most advanced farming techniques, the best possible mix of crop rotation, animal manuring, and composting, and the English, he said, would be starving now if they did not import tons of grain from other nations. What would happen when those other nations, in order to feed their own growing populations, stopped exporting?